
w
w

w
.i
n

l.
g

o
v

RELAP5 and CASL

Peter Cebull

July 27, 2011

Outline

• CASL overview

• What is LIME?

• Role of RELAP5-3D in CASL

• Initial RELAP5-3D Integration

• Recent Improvements

• Summary

Can an advanced “Virtual Reactor” be developed
and applied to proactively address critical
performance goals for nuclear power?

CASL has selected key phenomena limiting reactor
performance selected for challenge problems

CASL Organization

The CASL VR (VERA) builds on a foundation of mature,
validated, and widely used software

What is LIME?

• An acronym for Lightweight Integrating Multi-physics Environment for
coupling codes

• A tool for creating multi-physics simulation code(s) that is particularly
useful when computer codes are currently available to solve different
parts of a multi-physics problem

• Intended to provide

– Key high-level software,

– A well-defined approach (including example templates),

– And interface requirements for participating physics codes to
enable assembly of these codes into a robust and efficient multi-
physics simulation capability.

• One part of the larger VERA framework being developed in CASL

Important characteristics of LIME

• LIME is designed to:

– Enable separate physics codes (“new” and “old”) to be combined
into a robust and efficient fully-coupled multi-physics simulation
capability

– Allow composition of both controlled and open-source
components, enabling protection of export-controlled or proprietary
code while still allowing distribution of the core system and open
components

• LIME is not limited to:

– Codes written in one particular language

– A particular numerical discretization approach (e.g., finite element)

• LIME is not “plug and play”:

– Requires revisions/modifications to most stand-alone physics
codes

– Requires the creation of customized “model evaluators”

Key components of a simple generic application created
using LIME

Revisions and modifications that may be
required of a physics code
• Console I/O must be redirected (no pause statements or read/write to

standard streams)

• Each code must be wrapped so the multi-physics driver can link to it
(i.e., like a library)

• Each code must be organized into several key parts that can be called
independently

– Initialization: read inputs, allocate memory…

– Solve: compute solution for a given time step and state

– Advance: copy converged state and prepare for next step

Status of LIME

• Open source license being processed – being made available through
Trilinos

• Theory manual just released: Sandia report SAND2011-2195

• User manual in draft form

• LIME is not a fully mature tool

– Basic functionality exists and has been tested, but could benefit
from review and optimization

Role of RELAP5-3D in CASL

• VERA is being developed to address challenge problems

• Initial emphasis is on core physics/TH and crud deposition

Role of RELAP5-3D in CASL

• VERA Requirements Document describes technical abilities VERA
should provide

– capability to integrate systems analysis codes (e.g. RETRAN,
RELAP5, R7) to support performance of nuclear safety analyses
and analysis of plant accidents and transients

• RIA

• LOCA

• Non-LOCA transients and accidents

– These capabilities to be added in stages as relevant challenge
problems are addressed

• RELAP5-3D is expected to play a larger role later (years 4/5?)

Initial Integration of RELAP5-3D

• Permission to give RELAP5-3D to CASL (r3d300casl) obtained
01/07/2011

• Modifications were made to run stand-alone under LIME

– All writes to stdout (“tty”) were redirected to a file

– Code was refactored, three new subroutines added

– Build scripts were modified to produce libraries instead of an
executable

– A CASL flag was added (“cr64”) to conditionally implement the
above changes (i.e., dinstls linuxntl cr64 nonpa)

• Stand-alone integration of RELAP5 completed 02/17/2011

Refactorization of stand-alone RELAP5-3D

INPUTD MAJORPROC

TRNCTL STRIPPLOT

TRAN TRNFIN

TRNSET

INITDATA GNINIT1

RELAP5 RELAP5_ModelEval.cpp

R5SETUP R5SOLVE R5FINALIZE

INITDATA GNINIT1 INPUTD TRNCTL

TRAN TRNSET

TRNFIN

Improvements to Model Evaluator

• Modifications needed to move from stand-alone to a coupled capability

• Further refactoring of RELAP5 to allow LIME to control time steps

– R5solve split into three new routines

– Corresponding function calls added to model evaluator

• LIME program manager needs to be modified to handle re-negotiation
of time step size after RELAP5-3D cuts (or increases) it

RELAP5_ModelEval.cpp

R5SETUP R5POST_STEP R5FINALIZER5TAKE_TIME_STEPR5PRE_STEP

RELAP5_ModelEval.cpp (1)
//----------------------- constructor ---

RELAP5_ModelEval::RELAP5_ModelEval(const LIME::Problem_Manager & pm,

const string & name,

Epetra_Comm& relap5_sub_comm,

const std::string& input_file,

const std::string& output_file,

const std::string& restart_file) :

problem_manager_api(pm),

m_my_name(name),

timer(0),

m_input_file(input_file),

m_output_file(output_file),

m_restart_file(restart_file)

{

RELAP5_R5SETUP_F77(&input_file[0],

&output_file[0],

&restart_file[0],

input_file.length(),

output_file.length(),

restart_file.length());

RELAP5_R5PRE_STEP_F77 ();

}

RELAP5_ModelEval.cpp (2)

//----------------------- destructor --

RELAP5_ModelEval::~RELAP5_ModelEval()

{

RELAP5_R5FINALIZE_F77 ();

}

//------------------------ solve_standalone -----------------------------------

void RELAP5_ModelEval::solve_standalone()

{

RELAP5_R5TAKE_TIME_STEP_F77 ();

}

RELAP5_ModelEval.cpp (3)

//------------------------ get_time_step --------------------------------------

double RELAP5_ModelEval::get_time_step() const

{

return *ctrlmod_mp_dt_;

}

//------------------------ get_current_time -----------------------------------

double RELAP5_ModelEval::get_current_time() const

{

return *ctrlmod_mp_timehy_;

}

//------------------------ update_time --

void RELAP5_ModelEval::update_time()

{

RELAP5_R5POST_STEP_F77 ();

}

VERA and Trilinos

• VERA software is implemented as Trilinos external packages

• Physics codes are being converted to use Trilinos build system

Trilinos

CASLRAVEExt LIMEExt PSSDriversExt

VRIPSS

drivers src cmake

RELAP5Ext cmake

Conversion of RELAP5-3D Build System

• Trilinos uses CMake

– Cross-platform, open-source build system

– Uses compiler-independent configuration files to generate native
makefiles

• RELAP5-3D build scripts replaced by CMake files

– Easier integration with Trilinos build system

– Necessary for inclusion in CASL automated software testing

– Allows out-of-tree builds

$HOME

BUILD DEBUG_BUILD INSTALL Trilinos

Addition of RELAP5-3D to CASL Testing

• RELAP5-3D CMake conversion allows inclusion in automated testing
process

• VERA software packages stored in CASL repository under Git revision
control

• Automated testing checks out appropriate source, performs builds, and
runs tests at various frequencies

– Check in test script: manual process to do basic testing and
determine if it is safe to commit/push changes

– Continuous integration: continuous loop that runs tests when
global repository changes are detected

– Nightly regression testing: a range of VERA configurations are built
and tested with different compilers (e.g., gnu and Intel)

• Emails sent to relevant developers when failures are detected

CASL CDash Dashboard

Summary

• Completed

– RELAP5-3D given to CASL and placed in repository

– Initial stand-alone integration of RELAP5-3D complete

– RELAP5-3D build system converted to CMake

• Ongoing/future work

– Complete inclusion of RELAP5-3D in CASL automated testing

– Continue development of model evaluator

– Define an appropriate coupled application for RELAP5-3D

– Perform further LIME development as new physics codes are
introduced and coupled

Questions?
www.casl.gov or info@casl.gov

Extra Slides

The CASL Virtual Reactor is at the heart of the
plan and is the science and technology integrator

Many coupling strategies are possible using
LIME

• Choices available depend on what capabilities are in the physics codes
being coupled

– Restaurant analogy: Menu to choose from. You make choices,
different items have different costs and value. You also might have
dietary restrictions that preclude certain choices.

• Fixed point

– Jacobi or Seidel options

– Convergence based on “global residual” or “code by code”

• JFNK

– Requires residuals, preconditioning recommended

• Alternate solvers for individual codes (NOX solver library in Trilinos)

